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Abstract

In this paper, we introduce a new fast, higher-order solver for scattering by inhomogeneous media in three dimen-

sions. As in previously existing methods, the low complexity of our integral equation method, OðN logNÞ operations for
an N point discretization, is obtained through extensive use of the fast Fourier transform (FFT) for the evaluation of

convolutions. However, the present approach obtains significantly higher-order accuracy than these previous

approaches, yielding, at worst, third-order far field accuracy (or substantially better for smooth scatterers), even for

discontinuous and complex refractive index distributions (possibly containing severe geometric singularities such as cor-

ners and cusps). The increased order of convergence of our method results from (i) a partition of unity decomposition of

the Green�s function into a smooth part with unbounded support and a singular part with compact support, and (ii)

replacement of the (possibly discontinuous) scatterer by an appropriate ‘‘Fourier smoothed’’ scatterer; the resulting

convolutions can then be computed with higher-order accuracy by means of OðN logNÞ FFTs. We present a parallel

implementation of our approach, and demonstrate the method�s efficiency and accuracy through a variety of compu-

tational examples. For a very large scatterer considered earlier in the literature (with a volume of 3648k3, where k is the

wavelength), using the same number of points per wavelength and in computing times comparable to those required by

the previous approach, the present algorithm produces far-field values whose errors are two orders of magnitude smal-

ler than those reported previously.
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1. Introduction

Scattering problems find application in a wide range of fields including communications, materials science,

plasmaphysics, biology,medicine, radar, and remote sensing. The evaluation of useful numerical solutions for

scattering problems remains a highly challenging problem requiring novelmathematical approaches andpow-

erful computational tools: applications of interest make it necessary to evaluate highly oscillatory fields in

large, complex three-dimensional geometries. Hence, without an extremely efficient and high-order accurate

method, the computation of solutions to such problems is infeasible even with modern computing hardware.
In this paper, we present a new fast, higher-ordermethod for evaluation of scattering by inhomogeneousmed-

ia in three dimensions, which inOðN logNÞ operations (whereN is the total number of discretization points) is

able to produce highly accurate solutions for problems of unprecedented size. Before describing our method,

we formulate the problem and present an overview of previous work in this area.

Given an incident field ui, we denote by u the total field – which equals the sum of ui and the resulting

scattered field us:
u ¼ ui þ us: ð1Þ
Calling k the wavelength of the incident field and j ¼ 2p
k the corresponding wavenumber, we require that

the total field u satisfies [1, p. 2]
Duþ j2n2ðxÞu ¼ 0; x 2 R3; ð2Þ
where the given incident field ui is assumed to satisfy
Dui þ j2ui ¼ 0; x 2 R3: ð3Þ

Finally, to guarantee that the scattered wave is outgoing, us is required to satisfy the Sommerfeld radi-

ation condition [1, p. 67]
lim
r!1

r
ous

or
� ijus

� �
¼ 0: ð4Þ
The algorithms available for computing solutions to this problem fall into two broad classes: (i) finite

element and finite difference methods and (ii) integral equation methods. Use of finite element and finite

difference methods can be advantageous in that, unlike other methods, they lead to sparse linear systems.

Their primary disadvantage, on the other hand, lies in the fact that in order to satisfy the Sommerfeld radi-

ation condition (4), a relatively large computational domain containing the scatterer must be used, together

with appropriate absorbing boundary conditions on the boundary of the computational domain (see, for

example, [2–7]). Thus, these procedures give rise to very large numbers of unknowns and, hence, to very
large linear systems. In addition, accurate absorbing boundary conditions with efficient numerical imple-

mentations are quite difficult to construct: the error associated with such boundary conditions typically

dominates the error in the computed solution.

A second class of algorithms is based on the use of integral equations. An appropriate integral formu-

lation for our problem is given by the Lippmann–Schwinger equation [1, p. 214]
uðxÞ ¼ uiðxÞ � j2

Z
X
gðx� yÞmðyÞuðyÞdy; ð5Þ
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where gðxÞ ¼ eijjxj

4pjxj is the Green�s function for the Helmholtz equation in three dimensions, and where m is the

compactly supported function m = 1 � n2, with supp(m) = X. Integral equation approaches are advanta-

geous in a number of ways: they only require discretization of the equation on the support X of the scatterer,

and the solutions they produce satisfy the radiation condition at infinity automatically. Direct use of inte-

gral equation methods is costly, however, since they lead to dense linear systems: a straightforward com-
putation of the required convolution requires OðN 2Þ operations per iteration of an iterative linear solver.

As mentioned above, however, the highly accurate integral method that we present in this paper, in which

the computational complexity of the convolution evaluation is reduced to OðN logNÞ operations per iter-
ation, is highly competitive with finite element or finite difference approaches.

Fast solvers for (5), based on the fast Fourier transform (FFT), have been available for some time [8–10];

see also the more recent papers [11,12]. In these solvers, the convolution with the Green�s function is com-

puted via Fourier transforms, which, in turn, can be evaluated with low complexity by means of FFTs.

These methods do give rise to a reduced complexity for a given discretization, but, unfortunately, they
are only first-order accurate for discontinuous refractive indices – since they rely on use of discrete Fourier

transforms of non-smooth and/or non-periodic functions. Our approach also uses FFTs to achieve a re-

duced complexity, but, by means of a reformulation of the problem, it also yields higher-order accuracy:

at least third-order far field accuracy for discontinuous scatterers and much higher-order accuracies for

smoother inhomogeneities. In fact, this increase in convergence order requires minimal additional compu-

tational effort and, thus, allows for the solution of large problems in roughly the same amount of time as

the first-order methods cited above, but with significantly more accuracy. In our final computational exam-

ple in Section 4, for example, we show that, for a very large scatterer considered in [12] (3648k3, where k is
the wavelength) the present approach produces, in computing times comparable to those used in that ref-

erence, far-field values whose errors are two orders of magnitude smaller than those reported for the pre-

vious approach.

Despite the significant advantages exhibited by high-order methods over their low-order counterparts,

only limited attempts have been made to develop high-order methods for the problem under considera-

tion. A method is proposed in [13–15] on the basis of a locally corrected Nyström discretization. These

locally corrected quadrature rules were originally proposed in [16–18], wherein the author proves that

the accuracy obtained in an OðN logNÞ implementation is ‘‘Oðeþ hkÞ’’, where e is fixed by the choice
of the method parameters and h is the discretization spacing. In other words, the method exhibits kth

order convergence (where k may be chosen arbitrarily large), but only to an accuracy of e; if more accuracy

is desired, the parameters must be adjusted, which, in turn, leads to a higher computational cost. Our

method, on the other hand, has no such accuracy limitation. Furthermore, because of the simplicity of

our implementation, our method requires much less computational time. For example, in Fig. 2 of

[15], it is reported that a computation involving approximately 104 unknowns requires on the order

of 104 s, whereas Table 1 in the current paper shows that our approach requires approximately 100 s for a

computation involving over 64,000 unknowns. It should be noted that in [15] the authors solve the elec-
tric field integral equation and that their results were obtained on a 750 MHz HP PA-RISC processor.

However, these factors can only account for a small fraction of the 100-fold difference in computational

time.

An OðN logNÞ FFT-based method that, in the case of smooth scatterers, achieves high-order conver-

gence is presented by Vainikko in [19]. Briefly, this method follows from the following insight: as seen in

(5), if diam(X) 6 R, then, for x 2 X, the argument x � y of g satisfies, jx � yj 6 R; hence, changing

g(x) for jxj > R has no effect on the solution inside X. Hence, g(x) is set equal to zero (either discontinuously

or smoothly) outside of the ball of radius R centered at the origin and periodically extended with a periodic
cell given by a cube of side length L P 2R. This allows for efficient and accurate evaluation of the convo-

lution operator for x 2 X by means of the Fourier coefficients of the modified Green�s function and the

Fourier coefficients of (mu)(x).



E. McKay Hyde, O.P. Bruno / Journal of Computational Physics 202 (2005) 236–261 239
For Vainikko�s method, with a grid spacing of h � N�1/3, the L2-norm of both the near and far field

errors decays as h�l for m in the Sobolev space Wl,2. However, as with other FFT-based approaches, this

method provides only first order convergence for discontinuous scatterers. (In the same paper, an alter-

native approach is proposed that can be applied to problems involving piecewise-smooth refractive indi-

ces that yields L1-errors of the order of h2ð1þ j log hjÞ in both the near and far fields. This method
requires evaluation of the volume fraction of each discretization cell on each side of a discontinuity in

m = 1 � n2.)

The method we introduce in this paper is related to Vainikko�s approach in that we periodically extend

part of the Green�s function so that the convolution may be evaluated accurately by means of FFTs. How-

ever, our method introduces the following two significant improvements. First, instead of setting the

Green�s function equal to zero for jxj > R, we decompose g by means of a smooth partition of unity into

a smooth part with unbounded support, gsmth, and a singular part with compact support, gcmp, i.e.,
gðxÞ ¼ gsmthðxÞ þ gcmpðxÞ:
The convolution of mu with each of gsmth and gcmp can be computed efficiently and accurately by means of
FFTs.

This approach has the advantage of reducing the number of unknowns quite significantly for many

problems. More precisely, in Vainikko�s approach, one is constrained to represent the modified Green�s
function on cubic periodic cells; for elongated scatterers (large aspect ratios), this leads to an unnecessarily

large number of unknowns. In our approach, on the other hand, there is no such restriction, and we can use

box-shaped periodic cells (not necessarily cubic) to avoid this problem. For example, if a given scatterer has

a size of 1k · 1k · 5k, then for Vainikko�s approach one requires a periodic cell of size 10.4k · 10.4k · 10.4k,
whereas our method requires a much smaller periodic cell, 2k · 2k · 10k. Thus, in this case, to obtain a gi-
ven accuracy, our method will require roughly a factor of 28 fewer unknowns with corresponding time and

memory savings.

Our second significant improvement results by replacing, in the evaluation of the convolution, the

function m = 1 � n2 by an appropriate ‘‘Fourier smoothed’’ inhomogeneity em; see Section 2.3 for details.

(Of course, the number of Fourier modes in the approximation em is increased as the discretization is re-

fined.) Although such a substitution for a discontinuous m leads to a poor pointwise approximation of m,

it gives rise, rather counterintuitively, to a higher-order convergence rate in the evaluation of the convo-

lution integrals, even in the case of a discontinuous function m (see also [20–22]); in fact, by this Fourier
smoothing procedure, our algorithm substantially exceeds the convergence rate of Vainikko�s approach

for any given regularity of the inhomogeneity while still retaining the relative simplicity of the algorithm

– numerical implementation requires little more than a couple FFTs and the iterative solution of the lin-

ear system. (For a more detailed comparison of convergence rates in these approaches, see our theoretical

work on a related method in two dimensions [22]; we observe similar convergence rates in the current

approach.)

In Sections 2 and 3, we describe, respectively, the method and its parallel numerical implementation in

detail. Finally, in Section 4 we present several computational examples to illustrate the low computational
complexity, the higher-order convergence rate, and the parallel performance of our method.
2. Numerical method

We turn now to a detailed description of the numerical method. The core of our approach is an efficient,

higher-order scheme for computing the integral operator (see (5))
ðKuÞðxjÞ ¼ �j2

Z
X
gðxj � yÞmðyÞuðyÞdy
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at certain discretization points xj – whose definition we defer to Section 2.1. We thereby obtain the linear

system
uðxjÞ � ðKuÞðxjÞ ¼ uiðxjÞ; ð6Þ

whose solution u(xj), obtained by means of an iterative solver, approximates the total field. (We discuss our
choice of iterative solver in Section 3.)

As described briefly in Section 1, we decompose the Green�s function g(x) into a smooth part with un-

bounded support, gsmth(x), and a singular part with compact support, gcmp(x), by means of a partition of

unity. More precisely, we define gsmth(x) and gcmp(x) by
gðxÞ ¼ gðxÞð1� pðxÞÞ þ gðxÞpðxÞ ¼ gsmthðxÞ þ gcmpðxÞ;

where p(x) 2 C1, p(x) = 1 near x = 0, and p(x) = 0 outside some neighborhood of x = 0. (Of course, there

are many such functions, but we do not specify a particular choice at this time.) Thus, our approach re-

quires the evaluation of the two convolutionsZ

ðKcmpuÞðxÞ ¼ �j2

X
gcmpðx� yÞmðyÞuðyÞdy; ð7Þ

ðKsmthuÞðxÞ ¼ �j2

Z
X
gsmthðx� yÞmðyÞuðyÞdy: ð8Þ
2.1. Convolution with the compactly-supported singular kernel gcmp

To evaluate Kcmpu defined in (7) above, we make use of a highly accurate Fourier series approximation.

It is well known that Fourier series provide high-order accurate approximations for smooth and periodic

functions; this follows from the fact that the decay rate of the Fourier coefficients of a periodic function

depends on the function�s regularity [23, pp. 48, 71]. As explained below, the function Kcmpu can be viewed

as a (relatively) smooth and periodic function, and it is therefore approximated with higher-order accuracy

by a truncated Fourier series.

To see that Kcmpu can be extended as a smooth and periodic function, note first that, since gcmp and m

are both compactly supported, (Kcmpu)(x) vanishes for points x sufficiently far from supp(m). More pre-
cisely, assume that supp(m) � X[a,b], where X[a,b] denotes the box with corners a; b 2 R3, i.e., X[a,b] =

{x:aq 6 xq 6 bq, q = 1, 2, 3}. Thus, given that supp(gcmp) � X[�r, r] for some r 2 R3 with rq > 0, we have

that (Kcmpu)(x) = 0 for x 62 X[a�r,b+r].

Furthermore, in view of the known regularizing properties of the convolution operator, (Kcmpu) is a

smooth function, with its regularity determined by the regularity of the inhomogeneity m: if m is piece-

wise-smooth, then Kcmpu is C1,a and piecewise-smooth; if m is Ck,a and piecewise-smooth, then Kcmpu is

Ck+2,a and piecewise-smooth; see [24, p. 223, 25, pp. 78–80, 26, pp. 53, 56]. Therefore, as claimed, (Kcmpu)

can be extended as a smooth (at least C1 and piecewise-smooth for the class of inhomogeneities that we
consider) and periodic function with a periodic cell X[A,B], for values of A and B such that

X[a�r,b+r] � X[A,B]. (The actual choice of A and B is discussed later in this section.)

It follows that, for x 2 X[A,B], Kcmpu is represented with higher-order accuracy by the truncated Fourier

series
ðKcmpuÞðxÞ �
XM1

‘1¼�M1

XM2

‘2¼�M2

XM3

‘3¼�M3

ðKcmpuÞ‘ e2pid‘ �ðx�x0Þ; ð9Þ
where the components ðd‘Þq ¼
‘q

Bq�Aq
for q = 1, 2, 3. The choice of the truncation parameter

M = (M1, M2, M3) and the value x0 is discussed below. To simplify the notation, we will denote the triple

sum in (9) by
PM

‘¼�M .
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We must now compute the Fourier coefficients (Kcmpu)‘. Defining P(z) = z1z2z3 for any z 2 R3, we

have
ðKcmpuÞ‘ ¼ � j2

PðB� AÞ

Z
X½A;B�

ðKcmpuÞðxÞe�2pid‘�ðx�x0Þ dx

¼ � j2

PðB� AÞ

Z
X
mðyÞuðyÞe�2pid‘ �ðy�x0Þ dy �

Z
X½�r;r�

gcmpðzÞe�2pid‘�z dz ¼ �j2ðgcmpÞ‘ðmuÞ‘;
where
ðgcmpÞ‘ ¼
Z
X½�r;r�

gcmpðzÞe�2pid‘�z dz ð10Þ
and
ðmuÞ‘ ¼
1

PðB� AÞ

Z
X
mðyÞuðyÞe�2pid‘ �ðy�x0Þ dy: ð11Þ
Because gcmp(x) is known analytically, we compute its Fourier coefficients (gcmp)‘ only once, at the begin-

ning of each run. Note that the evaluation of the coefficients (gcmp)‘ is the only step of our approach that

requires the explicit integration over the singularity of the Green�s function. As described in Section 2.4, we
make use of a spherical coordinate change of variables that precisely cancels this singularity, thus allowing

the efficient and high-order accurate evaluation of (gcmp)‘.

To compute the Fourier coefficients (mu)‘, on the other hand, we use the trapezoidal rule. However,

since the inhomogeneity m is, in general, a piecewise-smooth function, straightforward application of the

trapezoidal rule would yield only first-order accuracy. We obtain higher-order values for (11) by first

replacing m by an appropriate Fourier-smoothed inhomogeneity em, and then integrating by means of

the trapezoidal rule. The somewhat surprising fact that this simple procedure leads to higher-order accuracy

for such integrands – the product of the known piecewise-smooth inhomogeneity m and a C1, piecewise-
smooth function – is the trademark of our approach. We discuss this key element of our method in detail

in Section 2.3.

Given that suppðemÞ � X½~a;~b� (to accommodate the Fourier smoothing, we require that suppðemÞ properly
contain supp(m)), and given the number of discretization points N ¼ ðN 1;N 2;N 3Þ, we define the discretiza-
tion points xj such that the components ðxjÞq ¼ ~aq þ jqhq, where jq ¼ 0; 1; . . . ;Nq and hq ¼ ð~bq � ~aqÞ=Nq for

q = 1, 2, 3. Letting x0 ¼ ~a and replacing m by em in (11), the trapezoidal rule gives that
ðmuÞ‘ �
1

PðB� AÞ

Z
X½~a;~b�

emðyÞuðyÞe�2pid‘ �ðy�~aÞ dy � PðhÞ
PðB� AÞ

XN�1

j¼0

emjuj e�2pid‘ �ðj1h1;j2h2;j3h3Þ; ð12Þ
where emj ¼ emðxjÞ; uj ¼ uðxjÞ:
So that (11) can be evaluated by means of an FFT, we use values of A and B such that ðBq � AqÞ=hq 2 N

for q = 1, 2, 3 – note that this implies that the domain X[A,B] is exactly an integer number of cells larger than

the smaller domain X½~a;~b� in each dimension. Thus, defining eN 2 N3 by
eN q ¼ ðBq � AqÞ=hq ð13Þ
for q = 1, 2, 3, we obtain
ðmuÞ‘ �
1

PðeN Þ
XeN�1

j¼0

emjuj e�2pi‘�ðj1=eN 1;j2=eN 2;j3=eN 3Þ; ð14Þ
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where emjuj ¼ 0 if jq > Nq for any q = 1, 2, 3, and where j‘qj6Mq with Mq ¼ eN q=2� 1 (see (9)). This dis-

crete Fourier transform is evaluated by means of an FFT in OðPðeN Þ logPðeN ÞÞ operations. Finally, given
this higher-order approximation of (mu)‘ and the pre-computed coefficients (gcmp)‘, the Fourier series (9) is

also evaluated by means of an FFT. In this manner, the desired higher-order approximation to Kcmpu is

obtained – at the expense of a total of OðPðeN Þ logPðeN ÞÞ operations.
2.2. Convolution with the smooth kernel gsmth

For each discretization point xj, jq ¼ 0; 1; . . . ;Nq for q = 1, 2, 3, gsmth(xj � y) 2 C1 as a function of y,

and thus the integrand of (8) is, as in (11), a product of the known piecewise-smooth inhomogeneity

and a C1, piecewise-smooth function. Hence, as with the evaluation of (11), we again use the Fourier

smoothing technique, described in detail in Section 2.3, for the higher-order evaluation of (Ksmthu)(xj) by

means of the trapezoidal rule. We thus obtain that
ðKsmthuÞðxjÞ � PðhÞ
XN1�1

k1¼0

XN2�1

k2¼0

XN3�1

k3¼0

gsmthðxj � xkÞemðxkÞuðxkÞ ¼ PðhÞ
XN�1

k¼0

ðgsmthÞj�k emkuk; ð15Þ
where (gsmth)k = gsmth((k1h1,k2h2,k3h3)), emk ¼ emðxkÞ, and uk = u(xk), and where we have denoted the triple

sum as
PN�1

k¼0 .

Since (15) is a discrete convolution, (Ksmthu)(xj) is computed for all discretization points xj in

OðPðNÞ logPðNÞÞ operations using FFTs [27, pp. 531–536]. We thus obtain an efficient and higher-order

accurate method for computing Ksmthu.
2.3. Fourier-smoothed scatterers

As described in Sections 2.1 and 2.2, the higher-order accuracy of our method depends fundamentally

on the higher-order accurate evaluation of (mu)‘ and (Ksmthu)(xj), defined in (11) and (8), respectively.

These quantities both involve the integral of the product of the known piecewise-smooth inhomogeneity

m and a C1, piecewise-smooth function. As mentioned above, straightforward application of the trapezo-

idal rule for the evaluation of these integrals yields only first-order accuracy. Somewhat surprisingly, how-
ever, first replacing m by an appropriate Fourier-smoothed inhomogeneity em as defined below, and then

integrating by means of the trapezoidal rule produces higher-order accurate values of (mu)‘ and

(Ksmthu)(xj). We emphasize that this simple procedure yields higher-order accuracy for all piecewise-

smooth scattering inhomogeneities m, including those with discontinuities and geometric singularities such

as corners and cusps, in spite of the low-order accurate truncation of the Fourier series of m and the asso-

ciated Gibbs errors.

In detail, we require the higher-order accurate evaluation of integrals of the form
Z
X
mðyÞwðyÞdy; ð16Þ
where m is the piecewise-smooth inhomogeneity with supp(m) � X and w is a C1, piecewise-smooth func-

tion; compare (11) and (8). (As discussed in Section 2.1, the regularity of w depends on the regularity of

m – if m is piecewise-smooth, then w is C1,a and piecewise-smooth; if m is Ck,a and piecewise-smooth, then

w is Ck+2,a and piecewise-smooth.) It is well known that the trapezoidal rule delivers high-order accuracy
for smooth and periodic integrands [28, p. 288]. To obtain a smooth and periodic integrand, we first replace

m(y) by pm(y)m(y), where pm 2 C1 with pm(y) = 1 for y 2 supp(m) and suppðpmÞ � X½~a;~b� for some points
~a; ~b 2 R3 – of course, this change has absolutely no effect on the value of the integral (16). We then replace

m by its truncated Fourier expansion with periodic cell X½~a;~b�:
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mFðxÞ ¼
XF
‘¼�F

m‘ e
2pic‘ �x; ð17Þ
where
PF

‘¼�F denotes a triple sum with F = (F1,F2,F3), and where the components ðc‘Þq ¼ ‘q=ð~bq � ~aqÞ for
q = 1, 2, 3. Thus, replacing the piecewise-smooth inhomogeneity m in (16) by
emðxÞ ¼ mFðxÞpmðxÞ; ð18Þ

we obtain
Z

X½~a;~b�

emðyÞwðyÞdy: ð19Þ
We claim that (19) provides a higher-order approximation to (16). Initially, this claim may appear some-

what dubious considering that the truncated Fourier series of the piecewise-smooth m converges quite
slowly. Of course, this intuition is confirmed when one seeks Fourier series approximations for the function

values m(y)w(y) for which one obtains only first-order accuracy; when approximating the integral of this

product, however, one obtains significantly higher-order accuracy. The presence of the smooth and periodic

factor pmw makes the difference: indeed, in terms of the Fourier coefficients m‘ and (pmw)‘ of m and pmw,

respectively, the error in this approximation is given by
Z
X
mðyÞwðyÞdy �

Z
X½~a;~b�

emðyÞwðyÞdy ¼
Z
X½~a;~b�

ðm� mFÞðyÞðpmwÞðyÞdy

¼ Pð~b� ~aÞ
X

j‘1j>F 1

X
j‘2j>F 2

X
j‘3j>F 3

m�‘ðpmwÞ‘: ð20Þ
Since pmw is C1, piecewise-smooth and periodic, its Fourier coefficients (pmw)‘ decay rapidly with

increasing ‘; thus the series in (20) decays rapidly with increasing F despite the relatively slow decay of

the coefficients m�‘, yielding higher-order convergence of (19) to (16). Finally, since the new integrandemw is smooth and periodic, the integral (19) is evaluated with higher-order accuracy by means of the tra-

pezoidal rule:
Z
X½~a;~b�

emðyÞwðyÞdy � PðhÞ
XN�1

j¼0

emðxjÞwðxjÞ; ð21Þ
where we fix N ¼ sF for an integer s P 2 to assure that there are enough points N to resolve the Fourier

modes of the integrand. The increased convergence order obtained by this procedure is demonstrated in

Section 4 in the case of scattering by a layered sphere with piecewise-constant refractive index; the conver-

gence results with and without Fourier smoothing are presented in Tables 1 and 2, respectively. Further-

more, in Appendix A, we give a complete proof of the convergence order and a numerical example in

the one-dimensional case.

Although we do not present a complete theoretical analysis of the method here, we expect the conver-

gence rates of our method to be similar to those that were established rigorously [22] for a related two-
dimensional algorithm. In that method, for example, for piecewise-smooth functions m(x), the method

yields second- and third-order convergence on the interior and exterior of the scatterer, respectively, with

significantly increased convergence rates for more regular inhomogeneities.

In defining the Fourier smoothed function em (see (17) and (18)), the user is relatively free to choose (i)

the number of Fourier modes F in the truncated Fourier series of m and (ii) the size of the enlarged com-

putational domain X½~a;~b�. In making these choices one should consider several competing factors. First,

smaller sizes of X½~a;~b� yield a smaller integration domains, but at the same time, give rise to sharper increases

in the function pm and thus require finer discretizations (i.e., smaller values of h) to obtain a given accuracy.
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There are similar competing factors in the choice of F, or equivalently s, where N ¼ sF for some fixed inte-

ger s P 2. Indeed, although any choice of s P 2 leads to the same asymptotic convergence (see Appendix

A), some values of s may be better than others in practice. In the numerical examples of Section 4, s = 2

provides the best overall performance.

Remark 1. Although gains in the asymptotic rate of convergence are always expected when substituting m

by em, real practical gains are most significant for scatterers with a low degree of regularity. For this reason,

one need not typically perform this substitution if m(x) is already sufficiently smooth; see, for example, Fig.

2 in Section 4.
2.4. Computation of the Fourier coefficients of gcmp

As defined in Section 2.1, gcmp(x) = g(x)p(x) where p(x) has support in X[�r,r] for some r 2 R3 with
rq > 0, q = 1, 2, 3. In our construction of p we make use of the following C1 function of one variable [29]
/ðtÞ ¼
1; for jtj6 r

exp 2e�1=x

x�1

� �
; for r < jtj < R; where x ¼ jtj�r

R�r

0; for jtjPR;

8><>: ð22Þ
where R 6 minqrq. Thus, we define p(x) = /(jxj). Our choice of the parameters r and R is subject to con-

siderations similar to those presented in Section 2.3 with regards to the size of X½~a;~b�; see Remark 2 in Section

3.1 for details.

Using spherical coordinates, we have
ðgcmpÞ‘ ¼
Z
X½�r;r�

gcmpðzÞe�2pid‘ �z dz ¼
Z R

0

Z
S1

eijq

4pq
pðqÞe�2piqd‘ �̂zq2 dq drðẑÞ

¼
Z R

0

gcmpðqÞj0ð2pjd‘jqÞq dq ¼ 1

2pjd‘j

Z R

0

pðqÞeijq sinð2pjd‘jqÞdq; ð23Þ
where
R
S1drð̂zÞ denotes integration over the unit sphere, and where the second to last equality follows from

[1, p. 32]. Note that the spherical coordinate transformation leads to two significant simplifications, namely,
(i) the associated Jacobian cancels the q�1 singularity in Green�s function, and (ii) the three-dimensional

integral defining (gcmp)‘ is reduced to a one-dimensional integral, which needs to be evaluated for various

values of the one-dimensional parameter jd‘j.
The integrals (23) depends on the two parameters j and jd‘j; we can reduce this dependence to a single

parameter as follows:
ðgcmpÞ‘ ¼
1

a

Z R

0

pðqÞeijq sinðaqÞdq ¼ 1

2ia

Z R

0

pðqÞeiðjþaÞq dq�
Z R

0

pðqÞeiðj�aÞq dq

� �
¼ 1

2ia
H½p�ðjþ aÞ �H½p�ðj� aÞf g; ð24Þ
where a = 2pjd‘j and
H½p�ðxÞ ¼
Z R

0

pðqÞeixq dq: ð25Þ
It is important to note that we can only use (24) to evaluate (gcmp)‘ when j‘j 6¼ 0. For j‘j = 0, on the other

hand, we have
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ðgcmpÞ0 ¼
Z R

0

qpðqÞeijq dq ¼ H½qpðqÞ�ðjÞ:
Therefore, to compute (gcmp)‘, we need an accurate and efficient method for the evaluation of H½f �ðxÞ,
where either f(q) = p(q) or f(q) = qp(q). This problem is not trivial since the values of x that need to be con-

sidered can be quite large, thus producing highly oscillatory integrands. Furthermore, straightforward inte-

gration by means of the trapezoidal rule will give only first-order accuracy since p(q) and qp(q) cannot be
extended as smooth and periodic functions. In Appendix B, we present an accurate and efficient method for

the evaluation of these integrals.
3. Implementation details

The main components in an implementation of our algorithm are (i) the evaluation of the discrete con-

volution (15) and the discrete Fourier transforms (9) and (14), and (ii) the iterative solution of the associ-

ated linear algebra problem. These elements of our algorithm are discussed in Sections 3.1 and 3.2,

respectively. A parallel implementation of our algorithm, finally, is described briefly in Section 3.3.
3.1. Evaluation of discrete convolutions and Fourier transforms

As described previously, the convolution with the smooth part of the Green�s function is approximated

by the discrete convolution
ðKsmthuÞðxjÞ � PðhÞ
XN�1

k¼0

ðgsmthÞj�k emkuk; ð26Þ
where jq ¼ 0; . . . ;Nq and hq ¼ ð~bq � ~aqÞ=Nq for q = 1, 2, 3 (see Section 2.2). Note that this operation in-

volves the values of ðgsmthÞjk for 06 jq 6Nq and 06 kq 6Nq � 1. Therefore, since �Nq þ 16 jq � kq 6Nq,
the FFT-evaluation of this convolution requires use of three-dimensional arrays of size 2N . (Note that

the array emkuk needs to be zero padded; see [27, pp. 531–537].)

In detail, to compute the convolution (26), we first evaluate the discrete Fourier transforms
ðĝsmthÞ‘ ¼
X2N�1

j¼0

ðgsmthÞj e�2pi‘�ðj1=2N1;j2=2N2;j3=2N3Þ
and
dmu‘ ¼
X2N�1

j¼0

emjuj e�2pi‘�ðj1=2N1;j2=2N2;j3=2N3Þ; ð27Þ
(where for jq > Nq, we set emjuj ¼ 0 and define (gsmth)j by periodic extension). We then use these quantities

to obtain
XN�1

k¼0

ðgsmthÞj�kmkuk ¼
X2N�1

‘¼0

ðĝsmthÞ‘dmu‘ e
2pi‘�ðj1=2N1;j2=2N2;j3=2N3Þ ð28Þ
for jq ¼ 0; . . . ;Nq.
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(Note that this straightforward approach for evaluation of discrete convolutions requires a factor of

23 = 8 more memory than is otherwise necessary for storage of the unknowns uj themselves. If memory

usage becomes a limiting factor, it is possible to break the emjuj array into pieces and to compute the con-

volution with each piece separately. This saves memory, but substantially increases CPU-time.)

On the other hand, the approximation of the convolution with the singular part of the Green�s function
requires computation of the sums
ðKcmpuÞðxjÞ �
XM
‘¼�M

ðgcmpÞ‘ ðmuÞ‘ e2pi‘�ðj1=
eN 1;j2=eN 2;j3=eN 3Þ; ð29Þ
where Mq ¼ eN q=2� 1; jq ¼ 0; . . . ;Nq � 1 and
ðmuÞ‘ � g‘ �
1

�ðeN Þ
XeN�1

j¼0

emjuj e�2pi‘�ðj1=eN 1;j2=eN 2;j3=eN 3Þ: ð30Þ
These sums may also be computed using three-dimensional FFTs, in this case, of size eN .

The parameters N and eN characterize the sizes of the sums in (27) and (30), both of which are discrete

Fourier transforms of the array ðemjujÞ – with appropriate zero-padding. These parameters need not be re-

lated, in principle, but time and memory savings result if the relation eN ¼ 2N is enforced. Indeed, ifeN 6¼ 2N , it is necessary to compute and store the arrays dmu‘ and g‘ separately, with similar duplication

in the storage of (gcmp)‘ and ðĝsmthÞ‘ as well as in the computation of (28) and (29). With the choiceeN ¼ 2N , on the other hand,
g‘ ¼dmu‘; ð31Þ

(see (27) and (31)), and defining
ĝ‘ ¼ ðgcmpÞ‘ þ ðĝsmthÞ‘; ð32Þ
we need only compute and storedmu‘, store ĝ‘ and evaluate the FFT of ĝ‘dmu‘. Thus, the selection eN ¼ 2N
leads a simpler algorithm, with reduced time and memory requirements. A further consequence of this

choice is that, in a parallel implementation of our algorithm, only a single array g‘ ¼dmu‘ must be scattered
and gathered at each iteration, thus significantly reducing communication costs.

In summary, by choosing eN ¼ 2N , an implementation of our algorithm for computing the integral oper-

ator requires the following five steps: (i) copy the values of mu (stored in an array of size N ) into a zero-

padded array of size 2N ; (ii) compute an (inverse) FFT of this array (see (27) and (30)); (iii) multiply the

result by the ĝ‘ as defined in (32) (these values of ĝ‘ are evaluated once at the beginning of the computa-

tion); (iv) compute an FFT of the result of this multiplication; and (v) copy these values back into the array

of values of mu. These steps require a total of OðPðNÞ logPðNÞÞ floating-point operations. Note that in a

parallel implementation the steps (i) and (v) are generally quite substantial, involving parallel scatters and
gathers.

Remark 2. Note that the choice of eN ¼ 2N implies that B� A ¼ 2ð~b� ~aÞ. Hence, since we require that

X½~a�r;~bþr� � X½A;B�, where supp(p) � X[�r,r], we have that R6rq 6 1
2
ð~bq � ~aqÞ. In other words, the support of

p must fit entirely inside the support of em (when translated appropriately). Choosing a value of R that is

smaller than this maximum size has few, if any, real advantages: a smaller value of R may require a finer

discretization to resolve the variations in p, and only minimal savings result from a smaller value of r in the

pre-computation step of evaluating the coefficients (gcmp)‘. Having chosen R, we then choose r, which also

involves a trade-off: a small value of r results in a more gradual transition in p from 0 to 1, but it also brings

the support of gsmth closer to the singularity in the Green�s function.
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3.2. Iterative linear solvers

The algorithm described above for the evaluation of the matrix-vector products can be combined with

any suitable iterative linear solver to obtain a fast, higher-order method for the solution of scattering prob-

lems. For our non-Hermitian linear system, one may, in principle, use solvers such as GMRES, CGS,
BiCGSTAB, and QMR [30]. We have found, however, that only GMRES and BiCGSTAB performed con-

sistently well for our problem. In fact, for each of the other solvers mentioned above, we found an example

in which either rapid divergence or stagnation occurred.

Depending on the characteristics of a particular problem under consideration as well as the computing

hardware available, use of one of the solvers GMRES or BiCGSTAB might be clearly advantageous over

use of the other. As is known, GMRES always requires fewer matrix-vector products than BiCGSTAB to

converge to a given residual error [30, p. 49]. However, at each iteration GMRES stores a new Krylov sub-

space basis vector whereas BiCGSTAB does not. Hence, in problems which require many iterations,
GMRES may exhaust the system memory. Of course, in such cases, one may restart GMRES after a given

number of iterations, thereby limiting the memory used, but also slowing the convergence rate. For these

reasons and on the basis of numerical experiments, in problems requiring many iterations, BiCGSTAB has

become our method of choice. On the other hand, since GMRES requires fewer matrix-vector products

than BiCGSTAB, in problems for which memory is not a limiting factor, GMRES is clearly preferable.

3.3. Parallel implementation

It is not difficult to produce an efficient parallel implementation of our algorithm: as follows from Sec-

tions 3.1 and 3.2, all that is required is an efficient parallel FFT package and an effective parallel iterative

solver for the linear system. Our implementation uses the parallel FFT package fftw [31,32] and the parallel

iterative solvers in the software package PETSc [33–35].
4. Numerical results

In this section we demonstrate the properties of the algorithm introduced in this paper through a variety

of numerical examples. In each case we present results for both the near field u = ui + us and the far field u1
– which is given by the expression [1, p. 223]
u1ðx̂Þ ¼ � j2

4p

Z
X
e�ijx̂�ymðyÞuðyÞdy; ð33Þ
where x̂ is a point on the unit sphere. In our tests the integral in (33) was evaluated with higher-order accuracy

bymeans of the trapezoidal rule after replacingmwith em andXwithX½~a;~b�; see Section 2.3 for a discussion and
justification of this procedure. In all cases the incident field used was the plane wave ui(x,y,z) = eijx. Many of

the results presented here were obtained from runs on a a single processor: a 1.7 GHz Pentium Xeon with 2

GB of RAM.We also demonstrate the parallel capabilities of our codes in a number of cases, using a number

between P = 2 and P = 32 of Pentium Xeon 1.7 GHz processors arranged in pairs, each pair sharing 1 GB of

RAM. In all cases the processors were connected via a Myrinet interconnect.

The tables presented in this section demonstrate the higher-order accuracy and OðPðNÞ logPðNÞÞ com-

plexity of our method: they report the number of discretization points N (in the form N 1 � N 2 � N 3), the

number of processors P used in the computation, the wall-clock time Tsetup required prior to the iterative
solution of the linear system (which is dominated by the time required to compute the coefficients (gcmp)‘),

the number of iterations Niter of the linear algebra solver (either GMRES or BiCGSTAB), and the (average)

wall-clock time per iteration Titer. The tables also list the maximum errors in the near field ð�nfu Þ and the far



Table 2

Convergence for the two-layer sphere without Fourier smoothing: clearly use of Fourier smoothing (see Table 1) gives rise to significant

accuracy improvements

N P Tsetup (s) Niter Titer (s) �nfu �ffu

10 · 10 · 10 1 2.27 15 0.06 3.04 1.66

20 · 20 · 20 1 4.29 20 0.46 0.781 0.401

40 · 40 · 40 1 20.86 20 3.71 0.187 9.44e�2

80 · 80 · 80 1 158.98 20 29.08 7.07e�2 2.97e�2

160 · 160 · 160 32 49.00 20 9.02 2.99e�2 4.29e�3

Table 1

Convergence for the two-layer sphere with Fourier smoothing

N P Tsetup (s) Niter Titer (s) �nfu �ffu

10 · 10 · 10 1 3.38 15 0.06 0.245 0.145

20 · 20 · 20 1 5.65 20 0.46 2.27e�2 4.77e�3

40 · 40 · 40 1 24.38 20 3.79 5.69e�3 9.46e�4

80 · 80 · 80 1 181.86 20 30.11 1.48e�3 5.25e�5

160 · 160 · 160 32 49.25 20 8.80 2.38e�4 6.68e�6
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field ð�ffu Þ, computed as the maxima of differences between the computed solution and a reference solution at

relatively fine discretizations of the scattering body and the unit sphere, respectively. The reference solu-

tions used for the layered-sphere tests were obtained from the exact Mie expression; in all other cases

the reference solution was obtained as the numerical solution resulting from a fine discretization. Through-

out this section the notation ‘‘e�n’’ stands for 10�n so that, e.g., 6.68e�6 = 6.68 · 10�6.

4.1. Moderately-sized layered sphere

Results obtained for a moderately-sized piecewise-constant two-layer sphere are presented in Fig. 1 and

Table 1. The refractive indices, non-dimensional radii and incident wavenumber were chosen to be n1 ¼
ffiffiffi
2

p
,

n2 ¼
ffiffiffi
3

p
, a1 = 0.5 and a2 = 1.0 and j = 4; thus, denoting by kint the wavelength corresponding to the outer

layer, this scatterer has a diameter of 2.21kint. For the algorithm parameters we used the values
~a ¼ ð�1:25;�1:25;�1:25Þ; ~b ¼ ð1:25; 1:25; 1:25Þ; r ¼ 0:5; and R ¼ 1:0: The near and far field reference

solutions were computed analytically. The analytical near field values were obtained on a 16 · 16 · 16 mesh

with corners at (�1, �1, �1) and (1, 1, 1): a subset of the computed solution coincides with this mesh, and

we computed the maximum near field error on these coincident meshes. The analytical far field values were
evaluated on a 32 · 16 mesh covering the unit sphere; we computed the far field error on this mesh.

The last row of results in Table 1 was obtained from parallel runs in P = 32 processors; we note that the

parallel speedup is nearly perfect. Indeed, an increase by a factor of eight in the discretization from that of

the fourth row of this table, which should lead to an increase by about a factor of eight in the computa-

tional time of our OðPðNÞ logPðNÞÞ algorithm, combined with a decrease by a factor of 32 that could opt-

imally result from use of 32 processors, would optimally result in a decrease by a factor of 4 in the overall

computing times – as indeed observed approximately in both the setup time and the time per iteration in the

fourth and fifth rows of Table 1. A more detailed discussion of the parallel performance of our method is
presented in the following paragraphs.

Per the discussion of Section 2.3, to obtain higher-order convergencemwas replaced by em: we see in Table

1 that the resulting near field solution converges roughly as h2 while the corresponding far field solution con-

verges as h3. These convergence rates agree with those established for our related two-dimensional approach



Fig. 1. Visualizations for the two-layer sphere. (a) Scatterer (q = n2 � 1); (b) near field intensity (juj2); (c) far field (ju1j).

E. McKay Hyde, O.P. Bruno / Journal of Computational Physics 202 (2005) 236–261 249
[22]. For comparison we present, in Table 2, the results that are obtained whenm is not replaced by em. In this

case, the convergence rates are significantly lower in both the near and the far fields, as expected.

4.2. Parallel performance, choice of iterative solver, memory usage

As mentioned in Section 3.2, memory vs. speed trade-offs result as the GMRES iterative linear algebra

solver is substituted by another solver such BiCGSTAB. The impact of the iterative solver in the perform-
Table 3

Two-layer sphere with Fourier smoothing N ¼ 160� 160� 160

P Solver Tsetup (s) Niter Nmvm Tmvm (s) �nfu �ffu

32 GMRES 49.25 20 20 8.80 2.38e�4 6.68e�6

32 BiCGSTAB 48.83 19 38 9.25 2.38e�4 7.03e�6

8 GMRES 191.56 20 20 35.27 2.38e�4 6.68e�6

8 BiCGSTAB 186.20 19 38 35.81 2.38e�4 7.04e�6

2 GMRES 725.07 20 20 130.22 2.38e�4 6.69e�6

2 BiCGSTAB 718.23 19 38 131.03 2.38e�4 7.07e�6
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ance of our algorithm in a distributed-memory parallel environment is demonstrated in Table 3 and dis-

cussed in what follows.

To gain an understanding of the impact of the memory-speed trade-offs mentioned above it is

important to have detailed information about the memory usage of the various portions of our algo-

rithm, as detailed in what follows. Excluding the memory required by the iterations in the linear sol-
ver, the present implementation of our method requires almost exactly 31 times as much memory as

it takes to store the unknowns: for example, for a 80 · 80 · 80 mesh the code uses an amount of

memory equal to that needed to store 31 · 813 unknowns. Of this factor of 31, 24 units are required

for the large FFT and Fourier coefficient arrays, 1 unit is for the incident field, 1 unit is for the

refractive index, and 1 unit is for the unknowns, for a total of about 27 units. The remaining 4 units

are taken up almost entirely by the overhead required by the PETSc linear solvers, including work

arrays, etc.

In addition to these 31 units of memory, GMRES requires 1 additional unit for every iteration, while
BiCGSTAB requires 2 units for an arbitrary number of iterations. Thus, two iterations of GMRES requires

as much memory as an unlimited number of iterations of BiCGSTAB (33 units), while 20 iterations of

GMRES and BiCGSTAB require 51 and 33 memory units, respectively. The trade-off in this significant

memory savings afforded by BiCGSTAB is computing time: while, in our context, GMRES and BiCG-

STAB yield similar residuals and errors for a given number of iterations, each iteration of BiCGSTAB re-

quires two matrix-vector multiplies while GMRES requires only one.

(This analysis does not scale perfectly as the number of processors is increased since there is a fixed mem-

ory overhead associated with use a parallel infrastructure; e.g., each processor requires additional memory
to manage the parallel communication.)

The parallel performances of the GMRES and BiCGSTAB versions of our algorithm are demonstrated

in Table 3. In addition to the standard notations of this section, in this table Nmvm denotes the number of

matrix-vector multiplies and Tmvm denotes the average time required per matrix-vector multiply. All of

these runs were performed with a relative residual tolerance of 3.25e�7, for which GMRES requires 20 iter-

ations, which matches the number of iterations reported in the last row of Table 1. In the P = 32 and P = 8

cases each pair of processors shared 1 GB of memory. In the P = 2 cases, in turn, each one of the two proc-

essors was furnished with 2GB of memory; the actual memory used by GMRES in this case was 3.5GB,
whereas BiCGSTAB used 2.2GB of memory.

4.3. Array of potentials

In Fig. 2 and Table 4, we present the results for the 5 · 5 · 5 array of smooth inhomogeneous scatter-

ers. (This scattering configuration is meant to demonstrate the capabilities of our method for the evalu-

ation of scattering by an array of quantum scattering potentials.) The centers of the scatterers are

separated by 1k, where k is the wavelength of the incident field, and the function m(x) = 1 � n2(x) for each
of these scatterers is given by a spherically symmetric function of the form (22), with r = 0, R = 0.5k, and
m = �1 at the center of each scatterer. Therefore, the support of the array is contained in a 5k · 5k · 5k
box. Since m 2 C1, we do not replace m by em, but instead integrate directly with the trapezoidal rule on

the 5k · 5k · 5k integration domain ð~a ¼ ð�2:5k;�2:5k;�2:5kÞ and ~b ¼ 2:5k; 2:5k; 2:5kÞ. For the partition
of unity function p, we set r = 0.5k and R = 2.5k. Since no analytical solution for this scattering config-

uration is known, the near field reference solution for this example was computed on a 320 · 320 · 320

mesh, and the corresponding linear system was solved using GMRES with a relative residual tolerance

of 1e�10. The maximum near field error was evaluated on the computational mesh, which, for each value
of N in Table 4, is a subset of the reference solution mesh. The reference far field was evaluated from the

reference near field on a 64 · 32 mesh on the unit sphere. As expected, we observe a very rapid conver-

gence rate.



Fig. 2. Visualizations for the array of smooth scatterers. (a) Scatterer (q = n2 � 1); (b) near field intensity (juj2); (c) far field (ju1j).

Table 4

Convergence for the array of smooth scatterers

N P Tsetup (s) Niter Titer (s) �nfu �ffu

20 · 20 · 20 1 4.46 15 0.44 0.600 5.56

40 · 40 · 40 1 23.51 25 3.64 6.49e�3 5.48e�2

80 · 80 · 80 1 171.88 30 28.43 1.66e�4 4.58e�4

160 · 160 · 160 32 48.31 35 8.74 2.08e�6 1.62e�5
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4.4. Complex scatterer

The next scattering geometry is displayed, in two orthogonal slices, in Fig. 3(a). This complex, discon-

tinuous scatterer is created by adding together a cube, two spheres, two layered spheres, and six smooth

inhomogeneities similar to those in the previous example. In detail, the scatterer of Fig. 3 is constructed

as follows: beginning with a cube of side 4 centered at the origin and m = �1, we add two unit spheres each

with m = +1 and centered at (0, �1, 0) and (0, 1, 0), respectively; this essentially cuts two spheres out of the

cube (m = 0 insides those spheres). Then, two layered spheres of unit radius (with a1 = 0.5, m1 = �1.25,

a2 = 1, and m2 = �1) are placed tangent to the two faces of the cube that are orthogonal to the y-axis.



Fig. 3. Visualizations for the complex scatterer. (a) Scatterer (q = n2 � 1); (b) near field intensity (juj2); (c) far field (ju1j).
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Finally, we add two sets of three smooth, inhomogeneous scatterers, with r = 0, R = 0.5, and m = ±0.5 at

the centers, which lie in the cube on the yz-plane. With j = 4, the length of this scatterer along the longest

dimension is 7.64kint, where kint is the wavelength corresponding to inner layer of the two layered spheres.

We set ~a ¼ ð�2:5;�5;�2:5Þ; ~b ¼ ð2:5; 5; 2:5Þ; r ¼ 0:5 and R ¼ 2:5:
In accordance with (18), our solver makes use of the smoothed version
emðyÞ ¼ pm1

ðyÞmF
1 ðyÞ þ pm2

ðyÞmF
2 ðyÞ þ � � � ð34Þ
of the function m, where mF
j is the truncated Fourier series for the jth discontinuous component of the

scatterer. (As in the previous example, we do not replace the C1 components of the scatterer by their

Fourier-smoothed approximations.) As shown in (34), it suffices to compute the Fourier coefficients of sim-

ple building blocks, i.e., the cube, the spheres, and the layered spheres – the corners, cusps, and inhomo-

geneities present no additional difficulties. This example illustrates one of the powerful features of this

method: it can treat complicated scatterers through simple addition of Fourier coefficients.

The reference near field solution for this example was evaluated on a 256 · 512 · 256 mesh using

GMRES with a relative residual tolerance of 1e�10. The corresponding reference far field was computed

on a 64 · 32 mesh on the unit sphere. The computational results for this example are contained in Fig. 3
and Table 5; again, we observe higher-order convergence in the near and far fields.



Table 5

Convergence for the complex scatterer

N P Tsetup (s) Niter Titer (s) �nfu �ffu

16 · 32 · 16 1 6.81 75 0.45 0.309 0.673

32 · 64 · 32 1 36.01 75 3.55 1.73e�2 3.37e�2

64 · 128 · 64 8 41.10 100 4.60 3.51e�3 1.29e�3

128 · 256 · 128 32 83.99 100 9.68 8.95e�4 1.11e�4
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4.5. Large four-layer sphere

Finally, we consider a large spherically layered sphere, each one of whose layers is filled by a material

with complex refractive index. This scatterer was considered in [12] and is, to our knowledge, the largest
inhomogeneous scatterer considered in the literature to date. In detail, the frequency of the incident field

is f = 1 GHz (yielding j � 20.9 m�1); the diameters of the layers are 1.515, 2.115, 2.415, and 2.865 m,

respectively; and the dielectric constants and conductivities of the layers are �r = 4, 2.56, 4, 2.25 and

r = 0.1, 0.07, 0.1, 0.02 S/m, respectively, where the complex permittivity is defined as � = �r�0 + ir/x with

�0 � 8.85 · 10�12 F/m and x = 2pf. The complex refractive index, in turn, is given by n2 = �/�0. Thus, in
terms of the minimum wavelength k1 (the wavelength in the first and third layers), this layered sphere

has a volume of 3648k31. For this example we used the algorithm parameters ~a ¼ ð�1:75 m;
�1:75 m;�1:75 mÞ; ~b ¼ ð1:75 m; 1:75 m; 1:75 mÞ; r ¼ 0:5 m; and R ¼ 1:5 m:

With N ¼ ð192; 192; 192Þ (7.19 million unknowns) and a relative residual tolerance of 0.5% = 0.005 (the

same tolerance and roughly the same number of points per wavelength as those used in [12] for this scat-

terer), use of GMRES and BiCGSTAB require, respectively, 88 iterations (88 matrix-vector multiplies) and

71 iterations (142 matrix-vector multiplies) to match the prescribed residual tolerance. The resulting values

of the maximum far field error are 1.27e�1 and 4.87e�2, (computed as the maximum difference between the

numerical and the analytical solution at 1024 angles; see Fig. 4). The maximum value 4.87e�2 of the far

field error resulting from BiCGSTAB occurs near the location of the minimum modulus of the far field,

while the 0.127 GMRES maximum far field error occurs near the location of the maximum modulus of
the far field. Therefore, in a log-scale plot the RCS produced by GMRES matches more closely the exact

solution than the BiCGSTAB solution does, although the former actually contains a larger maximum error.

The time statistics for these runs are as follows: using 32 processors, the setup time was 85.7 s and the

average time per matrix-vector multiply was 15.96 s. Thus, if the GMRES computation were performed on

a single processor (which was not possible because of memory limitations), it would require no more than

32 · 15.96 s = 8.51 min per iteration; the BiCGSTAB calculation, in turn, would have required no more

than 2 · 8.51 min = 17.02 min per iteration.

Ours being a higher-order method, these results may be considered to compare quite favorably with
the 64.68 minutes per iteration required in [12], even when we take into account the factor of three more

unknowns (21.23 million unknowns) required to compute the vector-valued solution to the integral equa-

tion considered in that paper. The advantages provided by the present higher-order approach are realized

more fully as the residual tolerance is decreased somewhat – which shows that the higher-order discre-

tization considered here actually approximates the integral operator much more closely than suggested

by results provided by previous methods. Indeed, using a residual tolerance of 1e�5 and after 177 BiCG-

STAB iterations (344 matrix-vector products; 2.5 as many iterations as those required by the 0.005

tolerance considered above) our method produces the maximum error of 3.08e�4: two full orders of
magnitude smaller error than that resulting from the larger tolerance, and, from our reading of the

graphical results of [12], at least that much smaller than those provided by the previous approach for

the same number of points per wavelength.



Fig. 4. BiRCS for four-layer sphere with N ¼ ð192; 192; 192Þ. (a) Residual tolerance = 5e�3. (b) Residual tolerance = 1e�5.
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Appendix A. Higher-order integration of Fourier-smoothed integrands in one dimension

As discussed in Section 2.3, the higher-order accurate approximation of an integral of a discontinuous

function through trapezoidal rule integration of the Fourier-smoothed version of the function is a central

aspect of our approach. In this appendix, we provide a simple example and a proof of this fact in one
dimension See Fig. A.1.

Consider the integral on the interval [�1, 1] of the product of a discontinuous and piecewise-smooth

function �

/ðxÞ ¼

1 if jxj6 2=3

0 otherwise;
and a C1, piecewise-smooth and periodic function w, which is defined on its period [�1, 1] as
wðxÞ ¼
9ðxþ 1Þ2 if � 16 x6 � 2=3

� 9
2
x2 þ 3 if � 2=36 x6 2=3

9ðx� 1Þ2 if 2=36 x6 1:

8><>:

We replace / by its truncated Fourier series on [�1, 1], i.e., the same period as w,
/FðxÞ ¼
XF
‘¼�F

/‘ e
pi‘x;



Fig. A.1. Example of Fourier smoothing. (a) Discontinuous function /. (b) Fourier-smoothed function /F. (c) C1 function w.
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where the Fourier coefficients /‘ are easily found analytically. (In general, we assume that the Fourier coef-

ficients of the inhomogeneity m are either known analytically, as in this case, or have been computed accu-

rately.) Table A.1 compares the accuracy obtained by means of the trapezoidal rule with and without the
substitution of / by /F. As expected, without the Fourier smoothing, one obtains only first-order conver-

gence. With the Fourier smoothing, on the other hand, we observe approximately third-order convergence

to the true value of the integral (see also [20,21]).

This rather surprising result can be proven in general for a piecewise-smooth /(x) and a C1, piecewise-

smooth and periodic w(x) on an interval [a,b]. As above, we replace / by /F and approximate the resulting

integral by means of the trapezoidal rule with N points. We denote the error in this approximation by

e(N), i.e.,
eðNÞ ¼
Z b

a
/ðxÞwðxÞdx� h

XN�1

n¼0

/FðnhÞwðnhÞ;
where h ¼ b�a
N . The error, etrap(N), in the trapezoidal rule integration of a given periodic function f (with

Fourier coefficients f‘) over its period [a,b] is given by
etrapðf ;NÞ ¼
Z b

a
f ðxÞdx� h

XN�1

n¼0

f ðnhÞ ¼ ðb� aÞf0 � ðb� aÞ
X1
p¼�1

fpN ¼ �ðb� aÞ
X
p 6¼0

fpN : ðA:1Þ
Here we have used the fact that
1

N

XN�1

n¼0

e2pi‘n=N ¼
1 if ‘ ¼ pN for p 2 Z

0 otherwise:

�



Table A.1

Higher-order trapezoidal rule integration via Fourier smoothing

N Abs. error

Convergence for
R 1
�1 /ðxÞwðxÞdx

4 0.264

8 6.42 · 10�2

16 4.71 · 10�2

32 1.20 · 10�2

64 1.07 · 10�2

128 5.13 · 10�3

256 2.62 · 10�3

F Abs. error

Convergence for
R 1
�1 /

F ðxÞwðxÞdx
4 2 6.93 · 10�2

8 4 4.11 · 10�4

16 8 4.87 · 10�4

32 16 3.86 · 10�5

64 32 4.96 · 10�6

128 64 7.25 · 10�7

256 128 6.68 · 10�8
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By integrating by parts, it follows that the Fourier coefficients of / and w on the interval [a,b] satisfy
/‘ ¼ O
1

j‘j

� �
ðA:2Þ

w‘ ¼ O
1

j‘j3

 !
ðA:3Þ
as ‘ ! 1. Using (A.1) as well as (A.2) and (A.3), we see that
eðNÞ ¼
Z b

a
ð/ðxÞ � /FðxÞÞwðxÞdxþ etrapð/Fw;NÞ ¼ ðb� aÞ

X
j‘j>F

/‘w�‘ þ etrapð/Fw;NÞ

¼ O
1

F 3

� �
þ etrapð/Fw;NÞ:
The Fourier coefficients of /Fw, which are needed to to bound etrap(/
Fw,N), are given by
ð/FwÞ‘ ¼
X
jkj6 F

/kw‘�k:
Thus, choosing N = sF for a fixed integer s P 2, we finally obtain
etrapð/Fw; sF Þ ¼
X
p 6¼0

X
jkj6 F

/kwpsF�k

6C1

X1
p¼1

XF
k¼1

1

k
1

ðpsF � kÞ3

6C1

X1
p¼1

1

ðpsF � F Þ3
XF
k¼1

1

k

6C2

log F

F 3
; ðA:4Þ
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for some positive constants C1 and C2, which are independent of F. Therefore, as seen in the numerical

experiments, this integration scheme yields nearly third-order accuracy, i.e.,
eðNÞ ¼ O
logN

N 3

� �
ðA:5Þ
as N ! 1, where N = sF for some fixed integer s P 2. It is easy to see that significantly higher-orders of

convergence are obtained for more regular integrands.
Appendix B. Efficient, high-order accurate evaluation of fourier integrals

Given a smooth, compactly supported, real-valued function f(t) for t 2 R, we seek to compute the

integral
IðxÞ ¼
Z b

a
f ðtÞeixt dt ðB:1Þ
for various values of x 2 [xmin,xmax]. Since Ið�xÞ ¼ IðxÞ, we restrict our attention to xmin P 0.

To do this, we introduce a modified version of the method described in [27, pp. 577–584] and the refer-

ences therein. First, to obtain a high-order approximation of the function f, we use piecewise polynomials
interpolants w(s) of order q where �q 6 s 6 q such that w(0) = 1 and w(s) = 0 for integer values

s = �q, . . ., q:
f ðtÞ �
XNþðq�1Þ

k¼�ðq�1Þ
fkw

t � tk
d

� �
;

where d = (b � a)/N, tk = a + kd and fk = f(tk), and where, for simplicity, we assume that the functions w(s)
are even; see Sections B.1 and B.2 for specific choices of w(s). (Note that this approximation requires knowl-

edge of f outside of the interval [a,b]; this presents no difficulties in our application, however, since the integ-

rands p(q) and qp(q) are given by analytic expressions; see Section 2.4.)

Then, after some simplification, the integrals (B.1) become
IðxÞ � d eixa W ðhÞSðhÞ þ mðhÞ þ eixðb�aÞlðhÞ
h i

;

where h = xd,
SðhÞ ¼
XN
k¼0

fk eihk;

W ðhÞ ¼
Z p

�p
wðsÞ cosðhsÞds;

mðhÞ ¼ f0c0ðhÞ þ
Xq�1

k¼1

fkckðhÞ � f�kckðhÞ
h i

;

lðhÞ ¼ fNc0ðhÞ þ
Xq�1

k¼1

fN�kckðhÞ � fNþkckðhÞ
h i

;

and
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ckðhÞ ¼ eihk
Z q

k
wðsÞeihs ds:
Note that since w is defined analytically, the functions W(h) and ck(h) can be computed exactly for each

choice of w.
The only approximation in this method is the high-order interpolation of f(t). As a result, only accurate

polynomial approximations of the function f(t) are needed, and no polynomial approximations of the

highly oscillatory function f(t)eixt need to be produced. As a result, this method evaluates the integrals

I(x) with an accuracy that is independent of x: for a fixed value of q, and given any � > 0, one can choose

N sufficiently large so that the error in the computed values of I(x) is less than �, uniformly in x.
As can be easily demonstrated, the convergence rate depends on q in much the same way as with New-

ton-Cotes integration methods [36], i.e., for q odd, the error decays like OðN�ðqþ1ÞÞ, and, for q even, the

error decays like OðN�ðqþ2ÞÞ. Hence, we choose q to be even, our most common choices being q = 2

(fourth-order convergence) or q = 4 (sixth-order convergence). The values of W(h) and ck(h) corresponding
to q = 2 and q = 4 are found in Sections B.1 and B.2, respectively.

In general, it may be necessary to evaluate I(x) for many different values of x. (In our application,

x = j ± 2pjd‘j with (d‘)q = ‘q/(Bq � Aq) and where j‘qj < eN q=2 for q = 1, 2, 3.) It is not difficult to obtain

W(h), m(h), and l(h) for all the necessary values of x since these functions involve only a few of the coef-

ficients fk. A straightforward evaluation of the sum S(h), on the other hand, requires OðN 2Þ operations.
To reduce this complexity, we first use an FFT to evaluate S(h) at hn = 2pn/NF for n = 0, . . ., NF � 1,

where NF > N. In detail, in this first step, we compute
SðhÞ ¼
XN
k¼0

fk eihnk ¼
XNF�1

k¼0

fk e2pikn=NF
by means of an FFT, where we set fk = 0 for k > N. Since S(h) is periodic in h with period 2p, we thereby

obtain the value of the SðhÞ at h ¼ hn þ 2pr; r 2 Z: Then, the desired values S(h) for h = xd are obtained

through interpolation of the FFT values. These values, together with those of W(h), m(h), and l(h), give us
the needed values I(x).

The number of interpolation points Np determines the order of the interpolation. To avoid instabilities
we generally choose Np 6 10. Furthermore, although increasing the value of NF also increases the accuracy

of the interpolated value S(h), the actual value of NF is less important than the ‘‘oversampling rate’’ b = NF/

N. This is the number of points per wavelength with which the most oscillatory mode in S(h) is sampled. We

have found that for the function (22) the values q = 4, N = 1024, b = 128, Np = 10 as well as q = 2,

N = 8192, b = 128, Np = 10 give us nearly full double precision accuracy. Either of these methods may out-

perform the other, however, depending on the problem size: the FFT requires a smaller computing time for

the first set of parameters than it does for the second set since NF = bN is smaller for the first set. On the

other hand, the interpolation uses less time for the second set than it does for the first set, since the endpoint
corrections m and l are simpler for the second set. Hence, in smaller problems (fewer unknowns), which

require less interpolation, we prefer the first set of parameters, and in larger problems, which require more

interpolation, we prefer the second set of parameters.

B.1. Second-order interpolating polynomials

For the case of q = 2, w(s) is taken as a sum of second-order Lagrange interpolating polynomials:
w1ðsÞ ¼
ðsþ2Þ
2

ðsþ1Þ
1

; if � 26 s6 0;

0; otherwise;

(
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w2ðsÞ ¼
ðsþ1Þ
1

ðs�1Þ
�1

; if � 16 s6 1;

0; otherwise;

(

w3ðsÞ ¼
ðs�1Þ
�1

ðs�2Þ
�2

; if 06 s6 2;

0; otherwise:

(

Notice that w1 and w3 are the usual second-order Lagrange interpolation scheme when the point

s = 0 lies on the boundary of two subintervals. On the other hand, w2 is the usual Lagrange interpo-

lating polynomial when the point s = 0 lies at the center of the subinterval. Addition and normalization

leads to
wðsÞ ¼ 1

2
w1ðsÞ þ w2ðsÞ þ w3ðsÞ½ �:
The functions W(h) and ck(h) in this case are given by
W ðhÞ ¼ 4sin3 h=2ð Þ 2 cos h=2ð Þ þ h sin h=2ð Þ½ �
h3

;

c0ðhÞ ¼ � 2iþ ð3þ 4ihÞh� 4ðhþ iÞeih þ ðhþ 2iÞe2ih

4h3
;

c1ðhÞ ¼ � eih �2iþ hþ ð2þ itÞeih½ �
4h3

:

It is important to note that for h � 1 the numerical evaluation of these functions can produce a signif-

icant amount of cancellation error. To avoid this problem, for sufficiently small h, we approximate W(h)
and ck(h) with a power series. Through experiment, we have determined the value of h at which to switch

from one method to the other, while ensuring double precision accuracy. For example, for the function
W(h) above, we switch to the power series method for h < 10�4; and for c1(h), we switch for h < 8/10.
B.2. Fourth-order interpolating polynomials

For q = 4, we similarly construct w(s) as a sum of fourth-order Lagrange interpolating polynomials:
w1ðsÞ ¼
ðsþ4Þ
4

ðsþ3Þ
3

ðsþ2Þ
2

ðsþ1Þ
1

; if � 46 s6 0;

0; otherwise;

(

w2ðsÞ ¼
ðsþ3Þ
3

ðsþ2Þ
2

ðsþ1Þ
1

ðs�1Þ
�1

; if � 36 s6 1;

0; otherwise;

(

w3ðsÞ ¼
ðsþ2Þ
2

ðsþ1Þ
1

ðs�1Þ
�1

ðs�2Þ
�2

; if � 26 s6 2;

0; otherwise;

(

w4ðsÞ ¼
ðsþ1Þ
1

ðs�1Þ
�1

ðs�2Þ
�2

ðs�3Þ
�3

; if � 16 s6 3;

0; otherwise;

(
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w5ðsÞ ¼
ðs�1Þ
�1

ðs�2Þ
�2

ðs�3Þ
�3

ðs�4Þ
�4

; if 06 s6 4;

0; otherwise:

(

Then, the function w(s) is given by the normalized sum of these piecewise polynomials
wðsÞ ¼ 1

4

X5
j¼0

wjðsÞ:
In this case W(h) and ck(h) are given by
W ðhÞ ¼
4sin5 h

2

	 

3h5

2h 12� h2 þ 3ð6� h2Þ cos h
� �

sin
h
2

� �
þ ð12þ h2Þ cos h

2

� �
þ ð12� 11h2Þ cos 3h

2

� �� 
;

and it is important to note that for h � 1 the numerical evaluation of these functions can produce a sig-

nificant amount of cancellation error. To avoid this problem, for sufficiently small h, we approximate

W(h) and ck(h) with a power series. Through experiment, we have determined the value of h at which

to switch from one method to the other, while ensuring double precision accuracy. For example, for

the function W(h) above, we switch to the power series method for h < 10�4; and for c1(h), we switch

for h < 8/10.
c0 ¼
1

48h5
12iþ 30h� 35ih2 þ 25h3 � 48ih4
	 


þ �48i� 108hþ 104ih2 þ 48h3
	 


eih
�

þ 72iþ 144h� 114ih2 � 36h3
	 


e2ih þ �48i� 84hþ 56ih2 þ 16h3
	 


e3ih

þ 12iþ 18h� 11ih2 � 3h3
	 


e4ih
�
;

c1 ¼
1

48h5
�36i� 66hþ 33ih2 � 29h3
	 


eih þ 72iþ 144h� 114ih2 � 36h3
	 


e2ih:
�

þ �48i� 84hþ 56ih2 þ 16h3
	 


e3ih þ 12iþ 18h� 11ih2 � 3h3
	 


e4ih
�
;

c2 ¼
1

48h5
36iþ 42hþ 3ih2 þ 7h3
	 


e2ih þ �48i� 84hþ 56ih2 þ 16h3
	 


e3ih
�

þ 12iþ 18h� 11ih2 � 3h3
	 


e4ih
�
;

c3 ¼
1

48h5
�12i� 6h� ih2 � h3
	 


e3ih þ 12iþ 18h� 11ih2 � 3h3
	 


e4ih
� �

:
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